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ABSTRACT 

The effect of chemical reaction on the linear stability of a viscoelastic fluid saturated horizontal densely-packed 

porous layer is investigated. The viscoelastic properties are given by Maxwell constitutive relations. The porous 

layer is cooled from the upper boundary while an adiabatic thermal boundary condition is imposed at the lower 

boundary. Linear stability analysis suggests that there is a competition between the processes of viscous 

relaxation and thermal diffusion that causes the first convective instability to be oscillatory rather than stationary. 

The effect of Deborah number, Darcy-Prandtl number, normalized porosity, and the Frank-Kamenetskii number 

on the stability of the system is investigated. Using a weighted residual method we calculate numerically the 

convective thresholds for both stationary and oscillatory instability. The effects of viscoelasticity and chemical 

reaction on the instability are emphasized. Some existing results are reproduced as the particular cases of the 

present study. 
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I.  Introduction 
Buoyancy-driven phenomena in porous media 

are actively under investigation as they have a wide 

variety of engineering applications such as 

geothermal reservoirs, agricultural product storage 

systems, packed-bed catalytic reactors, the pollutant 

transport in underground and the heat removal of 

nuclear power plants. Convection of non-Newtonian 

fluids in a porous medium is of considerable 

importance in several applied fields such as oil 

recovery, food processing, soil decontamination, 

storage of chemical or agricultural products, the 

spread of contaminants in the environment and in 

various processes in the chemical and materials 

industry. The onset of thermal convection in a 

viscoelastic fluid was studied by many authors [1-4]. 

Extensive reviews on this subject can be found in the 

books by Nield and Bejan [5] and by Kaviany [6]. 

With the growing importance of composite 

materials made up of polymeric substances in modern 

technology, particularly, in material processing, 

nuclear engineering, geophysics and bio-engineering, 

the investigations of such fluids is desirable. These 

fluids have high molecular weight and are 

viscoelastic in nature. Flow instability and turbulence 

are far less widespread in viscoelastic fluids than in 

Newtonian fluids because of high viscosity of the 

polymeric fluids. Viscoelastic fluids are expected to 

show markedly different behaviours of evolving 

convective instabilities. 

      

In the linear stability analysis, if the imaginary 

part of the largest eigenvalue at the neutrally stable 

state is zero, the new mode or flow pattern grows 

monotonically without oscillation and we say that the 

exchange of stability is valid.  On the other hand, if 

the imaginary part of the largest eigenvalue at the 

neutrally stable state is non-zero, the new mode 

grows with oscillation and this instability is called 

overstability. As the elasticity of viscoelastic fluids 

allows the periodic instability to be sustained in 

addition to the stationary modes, viscoelastic fluids 

will exhibit an oscillatory convection at the threshold 

of stationary mode.   

Since the Rayleigh-Bénard convection involves 

complicated flow fields that are closer to polymeric 

processing situations than the usual viscometric 

flows, investigating this problem through a 

viscoelastic fluid model is essential. Copious 

literature is available on thermal convection in a 

viscoelastic fluid layer heated from below and is well 

documented [7-8]. Nevertheless, its counterpart in a 

porous layer has received little attention [9-12]. Tan 

and Masuoka [13] performed a stability analysis of a 

Maxwell fluid in a porous medium heated from 

below based on Darcy-Brinkman-Maxwell model. 

Wang and Tan [14] studied the linear stability of a 

Maxwell fluid in the Bénard problem for a double 

diffusive mixture in a porous medium based on the 

Darcy-Maxwell model. The effect of thermal/gravity 

modulation on the onset of convection in a Maxwell 
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fluid saturated porous layer was studied by 

Malashetty and Begum [15]. More recently, Ersoy 

[16] studied the steady flow of a Maxwell fluid in a 

porous orthogonal rheometer with the application of a 

magnetic field. It was observed that the effects of the 

Deborah number, the suction/injection velocity 

parameter, and the Reynolds number in the absence 

of a magnetic field are similar to those in the 

presence of a magnetic field.  

When an exothermic reaction takes place in a 

fluid-saturated porous medium, the heat generated by 

the reaction changes the fluid density and free 

convection may occur. The induced natural 

convection, in turn, affects the rate of heat release by 

the reaction. The complex interaction between these 

two processes is the major cause of many of the 

instabilities observed in chemically reacting systems.  

Kordylewski and Krajewski [17] were the first to 

perform a stability analysis based on Darcy’s law 

with the Boussinesq approximation and a zero-order 

exothermic reaction. Farr et al. [18] carried out 

stability analysis on free convection in a confined 

porous medium with zero-order exothermic reactions. 

Malashetty et al. [19] performed a linear stability 

analysis to study the onset of convective instability in 

a horizontal inert porous layer saturated with a fluid 

undergoing a zero-order exothermic chemical 

reaction. McKay [20] investigated the onset of 

buoyancy-driven convection in superposed reacting 

fluid and porous layers. Khudeja et al. [21] 

investigated the problem of onset of convective 

instability in a horizontal inert porous layer saturated 

with a Maxwell viscoelastic fluid subject to zero-

order chemical reaction by linear stability analysis. 

The possibility of oscillatory instability, which is 

inherent in viscoelastic fluid convection, is discussed. 

It is found that, with chemical reactions, the fluid in 

the porous medium is more prone to instability as 

compared to the case in which chemical reactions are 

absent. Recently, Rashidi et al. [22] employed 

optimal homotopy analysis method to investigate the 

steady laminar incompressible free convective flow 

of a nanofluid past a chemically reacting upward 

facing horizontal plate in a porous medium taking 

into account heat generation/absorption and the 

thermal slip boundary condition. 

Furthermore, this problem has application in the 

study of mobility control in oil displacement 

mechanisms which improves the efficiency of oil 

recovery. The performance of a reservoir depends, to 

a large extent, upon the physical nature of crude oil 

present in the reservoir. The heavy crude is non-

Newtonian and also some oil sands contain waxy 

crudes at shallow depths of the reservoirs which are 

considered to be viscoelastic. Hence a viscoelastic 

model of a fluid serves to be more realistic than any 

other Newtonian or non-Newtonian model.  

The purpose of the present work is to analyze the 

influence of viscoelasticity on Rayleigh-Bénard 

convective thresholds in a Maxwell fluid when the 

fluid is undergoing a zero order exothermic chemical 

reaction and lower boundary is adiabatic in nature. In 

the neighborhood of the critical conditions, the effect 

of relaxation parameter on the variation of chemical 

reaction parameter with respect to media Darcy-

Rayleigh number is investigated.  This problem will 

be promising in designing and operating many 

processes of non-Newtonian liquids in porous 

materials involving natural convection that cannot be 

explained for the stationary mode.  

 

II.  Mathematical Formulation 

 
Figure 1. Physical configuration of the problem. 

 

We consider an incompressible viscoelastic fluid 

saturated horizontal porous layer of finite thickness d. 

A Cartesian co-ordinate system (x, y, z) is chosen 

such that the origin is at the bottom of the layer and 

the z-axis is directed vertically upward. The 

boundaries of the porous layer are kept at constant 

but different temperatures, that is, Th  at the lower 

boundary z = 0, and ( )cT Th  at the upper boundary 

z = d.  

The inert porous layer contains a chemically 

reactive Maxwell fluid which is subject to weakly 

exothermic chemical reactions. If the temperature in 

the whole domain of interest varies slightly from cT , 

a zero order reaction can be assumed. Moreover, it is 

assumed that local thermal equilibrium exists 

between the solid matrix and the saturated fluid. The 

Boussinesq approximation, which states that the 

effect of compressibility is negligible everywhere in 

the conservation equations except in the buoyancy 

term, is assumed to be valid and the rheology of the 

viscoelastic fluid is approximated by the Maxwell 

constitutive model. The system of equations 

describing the problem under consideration is the 

following          

 

0q 


                                                                  (1) 
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where ( , , )q u v w


 is the mean filter velocity, t is the 

time, p is the pressure,   is the fluid density, λ  is 

the stress relaxation time, o  is the reference 

density, g


 is the acceleration due to gravity,   is 

the fluid viscosity, ε  is the porosity, k  is the 

permeability of the porous medium,   is the 

effective thermal diffusivity, γ  is the ratio of the 

specific heat of the solid due to porous medium and 

that of the fluid at constant pressure,   is the 

thermal expansion coefficient, T  is the temperature, 

Q is the product of the heat of reaction, a pre-

exponential factor and reactant concentration, E is the 

activation energy, R is the universal gas constant,   

is the vector differential operator and  , ,x y z  are the 

spatial coordinates.  

 

The thermal boundary conditions are given by  

 

 , ,T x y d Tc                                                         (5) 

and  

 , ,0 0
T

x y
z





,                                                      (6) 

where T Th c . The fluid in the porous medium is 

subject to high-activation energy such that 

1RT Ec  . With this approximation, Eq. (3) 

simplifies to 

  

   2q exp
t


     


   





,                (7) 

 

where  Q exp E RT Tc r   ,  T T Tc r    

and 2T RT Er c . Here Tr  is the prescribed 

reference temperature for the reacting fluid. Eqs. (5) 

and (6), in terms of  ,  reduce to  

0      at  * 1z                                                    (8) 

and  

0
z





    at  * 0z                                                (9) 

 

At an undisturbed state, we have 

 0,0,0q 


, ( )zb  , ( )p p zb , ( )zb      (10) 

The quiescent state solutions are therefore given 

by the following equations  

0
dpb gb
d z

                                                      (11) 

1 Tb o r b                                                 (12) 

 
2

0
2

d b exp b
dz


    .                                   (13) 

 

Eq. (13) can be rewritten in the dimensionless form 

  

 
2

2*

d b F exp b
dz


  ,                                           (14) 

where 2F d  . The dimensionless number F  is 

the Frank-Kamenetskii number which is the ratio of 

characteristic flow time to characteristic reaction 

time. On integration, Eq. (14) leads to (after dropping 

the asterisk) the general solution 

1log
2

2
11 2log 1 0

11 2

C
b

F

C z
C e

for F
C z

C e


 

  
 

 
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   
      

   (15) 

where 1C  and 2C  are the integration constants to be 

determined. Application of the following boundary 

conditions 

*

d b
h

dz


   at  * 0z     and  0b     at  * 1z       (16) 

 

gives 1C  implicitly through the following equation 

2 2
1 1 1 1 1

1 1

F FC
e

C C

   
       
   
      

                 (17) 

 

and 

 

12C  .                                                                  (18) 
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It follows from (17) that there exists an implicit 

relation between 1C  and F . This relation is 

illustrated in Fig. 2, which shows that no solution 

exists for 1C  beyond the critical value of F . For F  

less than this critical value, there are two values of 

1C  which correspond to two basic undisturbed 

temperature profiles. This value of F  beyond which 

no solution exists is called the ignition value [19]. 

 

 

Figure 2. Plot of 1C versus F . 

 

For values of F  higher than this critical value, 

the solution jumps to combustion state. The ignition 

point corresponds to adiabatic conditions at the lower 

boundary 

0
1

F

C





.                                                                (19) 

 

     Applying (19) to (17) gives value of 1C  which on 

further substitution into (17) gives  

 

2 4 22 4

2 4 2

FFe
F

  
 

                                        (20) 

 

     A numerical solution of the above equation gives 

0.8785F  , which is the critical value of F  at 

ignition for this fluid with a constant heat flux lower 

boundary. The ignition value obtained here is the 

same as the one obtained by Mubeen et al. [23] 

though the lower boundary was considered to be 

isothermal in their case. 

 

The values of 1C  for a physically realistic case 

(corresponding to the lower branch of 1C ) at 

different values of F  are shown in Table 1. 

 

  

 

Table 1: Values of 1C  for different values of F  

F  1C  

0.1 0.210722 

0.2 0.446317 

0.3 0.71355 

0.4 1.02254 

0.5 1.38951 

0.6 1.84335 

0.7 2.44491 

0.8 3.37523 

0.8785 5.75696 

 

The temperature of the adiabatic lower wall in 

the basic state can be obtained from (15) which on 

substituting into (17) gives 

2

1 1 1
ln

2 1 1

he
F

he he



 

  
     

      
       

                    (21) 

Computations for 1C  for physically realistic 

cases were performed for selected values of  h  and 

for different values of F  up to its ignition value. The 

results of these computations for 1h   are 

presented in Fig. 3.  

 

 
Figure 3. Basic temperature profiles for different  

                   values of F  and 1h  . 

 

It is seen that, for small values of F , the basic 

temperature profile is piecewise linear, the different 

gradients result from the different thermal 

conductivities in each region. However, the basic 

temperature profile turns out to be more and more 

nonlinear, indicating a stronger chemical reaction, as 

the value of F is increased as the heat generated due 

to the chemical reaction also increases. 
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III.  Stability Analysis 

We perform a linear stability analysis by letting  
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where the primes indicate infinitesimally small 

perturbations from the undisturbed state. On 

substituting (22) into (1), (2), (4) and (7), neglecting 

the nonlinear terms, incorporating the quiescent state 

solutions and eliminating the pressure term, we 

obtain the following equations   
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where    2 2 2 2 2
1

x y       . Using the 

scaling 
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(23) and (24) can be expressed (after dropping the 

asterisks) in the following dimensionless form  
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Here 2 2
oPr d kD      is the Darcy-

Prandtl number, oRa g kT dr   the media 

Darcy-Rayleigh number, 2Γ λκ εd  the Deborah 

number and  χ ε γ  the normalized porosity. 

( νPr
κ

  is the Prandtl number and 
2

kDa
d

  is 

the Darcy number). The buoyancy due to thermal 

gradient is characterized by the Rayleigh number, the 

ratio between viscous and thermal diffusivities is 

given by Prandtl number, the ratio between porosity, 

Prandtl number and Darcy number is given by Darcy-

Prandtl number, the viscoelastic character of the fluid 

appears in the relaxation parameter Γ , which is also 

known as the Deborah number. The normalized 

porosity is expressed as a ratio of porosity of the 

porous medium and the solid to fluid heat capacity 

ratio. The range of values for Darcy-Prandtl number 

for the Maxwell fluid in porous media is not available 

[15]. Therefore, we consider a wide range of values 

for the Darcy-Prandtl number. 

 

We now assume that the solutions of (26) and 

(27) have the form 

 

 
( )

( )
( )

w W z
exp i lx my t

z



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                      (28) 

where l  and m  are the horizontal wavenumbers in 

the x and y directions respectively. The quantity   

refers to the growth rate. Substitution of (28) into 

(26) and (27) yields the following equations 
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     Eqs. (29) and (30) are solved subject to the 

boundary conditions 

 

0 at 1

0 at 0

W z

W D z

    


    
                                     (31) 

 

IV.  Method of Solution 

The system comprising (29) and (30) and the 

homogeneous boundary conditions (31) is an 

eigenvalue problem with Ra  being the eigenvalue. 

An approximate solution of this eigenvalue problem 

can be obtained by the well-known Galerkin method 

[24]. To this end, we let                               

        

1 1W A W   and 1 1B                                  (32) 

where 1W  and 1  are the trial functions that must 

satisfy the boundary conditions (31). Substituting 

(32) into (29) and (30), multiplying the resulting 

equations by 1W  and 1  respectively, integrating 

each equation between 0z   and 1z  , and 

performing some integration by parts, we obtain   
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     The criterion for the existence of the unique 

solution of the system of (33) and (34) leads to  
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PrD
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 
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     The marginal Ra  corresponding to the onset of 

stationary convection (when the principle of 

exchange of stabilities is valid) is obtained from (36) 

by taking 0  as 

 1 4 3

2
2 1

X F Y Y
Ras

a X Y


 .                                       (37) 

 

     Keeping in mind the chosen boundary conditions 

(31), we deal with the following trial functions 

( ) sin( )1

( ) cos( )1
2

W z z

z z





 


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

                                               (38) 

     The trial functions for the z-component of velocity 

and temperature satisfy the boundary conditions, but 

may not exactly satisfy the differential equations. 

This results in residuals when the trial functions are 

substituted into the differential equations. The 

Galerkin method warrants the residuals be orthogonal 

to each trial function.  

     We notice that the viscoelastic parameter   is 

associated with  . Thus, when 0  , there is no 

distinction between viscous and viscoelastic fluids. 

Thus we are interested here only in the onset of 

oscillatory convection for which case we put i   

in (36), where   is real. As Ra  is real this leads to 

the expressions for the frequency and marginal Ra  

corresponding to the oscillatory state as  

           

 

 

3 4 4 3 22
2

4 3

Y FY F Pr Y Pr Y Pr Y

FY Y

D D D  




   




(39) 

and 

    

 

2
1 2 3 4 2 3 4

2 2 2
2 1 3 4

X Pr Y Y F Y Y Y F Y

Ra

a Pr X Y Y F Y

D

o
D

 

 

 
    

  



 (40) 

 

V.  Results and Discussion 

 
     Using the trial functions in (38) we obtain the 

marginal Ra  corresponding to stationary convection 

as 

  2 2 2 24 8 43

264
2

a a FY

Ras
a X

 


  


        (41) 

     The minimum value of the Rayleigh number 

occurs at  

 

2 2 8 4
2 2

a FYc



 

  
 

                                 (42) 

 

     This is horizontal wave number at the onset of 

free convection. (42) is obtained by differentiating 

(41) with respect to a. Substituting (42) in (41) gives 

the value of the critical Rayleigh number. This 

expression for ac is same as obtained previously by 

Malashetty et al. [19]. 

 

     The media Darcy-Rayleigh number for the 

stationary case, as seen in (37) is a function of the 

Frank-Kamanetskii number and wave number and it 

is independent of the viscoelastic parameter, 

normalized porosity and Darcy-Prandtl number. This 

is because of the absence of base flow in the present 

case. In order to illustrate the effect of Frank-

Kamanetskii number on the exchange of stabilities 

and overstability, we evaluate critical media-Darcy 

Rayleigh number for both stationary and oscillatory 

cases. Examining Table 2, it is clear that the 

overstability occurs before that of the exchange of 

stability i.e., c cRa Rao s  for the same wave number.
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Table 2. Comparison of critical values for stationary and oscillatory cases with 0.5, 10, 0.5PrD    . 

F  cRas  cas  cRao  cao  2
c  

0.1 682.978 2.1975 268.547 3.80299 11.2453 

0.2 319.07 2.17018 127.109 3.80525 11.2174 

0.3 197.162 2.13843 79.7518 3.80791 11.1862 

0.4 135.486 2.10049 55.8166 3.8111 11.1506 

0.5 97.8329 2.05361 41.231 3.81504 11.109 

0.6 71.91 1.99233 31.2232 3.82012 11.0586 

0.7 52.2446 1.90405 23.6823 3.82721 10.9935 

0.8 35.3437 1.74458 17.3102 3.83885 10.8964 

0.8785 13.4634 0.545699 10.374 3.87177 10.6876 

     

It is also seen from Table 2 that both cRao  and 

cRas  decrease as the value of F  is increased. Thus 

the effect of chemical reaction in a horizontal porous 

layer containing a viscoelastic fluid is to enhance 

instability.  

 

The critical wavenumber of the oscillatory 

convection is larger than that of stationary 

convection, just as in the case of a Newtonian fluid 

saturated porous layer [15].  

 

 

 
 

Figure 4. Variation of critical wave number with    

Frank-Kamenetskii number for stationary case. 

 

 

Further, as seen in Fig. 4, the decrease in the 

critical wave number for the stationary case is drastic 

near the ignition point. It is important to note that 

stationary convection is independent of the 

viscoelastic parameter and the result is same as in 

case of a Newtonian fluid undergoing a zero order 

chemical reaction.  

 

 

Figure 5. Variation of critical wave number with   

Frank-Kamenetskii number for oscillatory case. 

 

For the oscillatory case, the critical wave number 

increases with increasing F  and the increase is 

drastic near the ignition point as seen in Fig. 5. It is 

also seen that the angular frequency of the system 

reduces significantly with F .  
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Figure 6. Stability curves showing Ra, as a function 

of wave number and its dependence on Deborah 

number   for 0.5, 0.5, 20F PrD   . 

 

In order to illustrate the effect of relaxation time 

of the fluid on the overstability, we plot the typical 

curves of the Rayleigh number as a function of the 

wave number in Fig. 6. Examining, we observe that 

the Maxwell fluid with a higher value of the 

relaxation time will exhibit overstability at a lower 

Rayleigh number. As the Deborah number increases, 

the critical Rayleigh number for overstability 

decreases. This indicates that elasticity of a Maxwell 

fluid has a destabilizing influence on a fluid layer 

undergoing a chemical reaction in a porous medium 

heated from below.  

 

The effect of Prandtl number is also important 

because many practical viscoelastic liquids have 

large Prandtl number. In Fig. 7 the effect of Darcy-

Prandtl number on the stability of the system is 

displayed. For the same wave number, the 

overstability curves lie far below that of exchange of 

stability.  

 

 
Figure 7. Stability curves showing Ra as a function 

of wave number and it dependence on Darcy-Prandtl 

number PrD  for 0.5, 0.5, 0.5F     .  

 

 

 
Figure 8. Stability curves showing Ra as a function 

of wave number and it dependence on normalized 

porosity  for 0.5, 20, 0.5F PrD    . 

 

Thus Darcy-Prandtl number, which is the ratio 

involving porosity, Prandtl number and Darcy 

number, has a destabilizing influence on the system. 

Further, all the neutral stability curves of oscillatory 

mode for different PrD  remain apart in the large 

wavenumber regions. This behaviour has been 

observed before for a Maxwell fluid in non-porous 

cases [13, 25]. 

 

Fig. 8 shows the effect of normalised porosity on 

the neutral curves. It is observed that with the 

increasing value of   the values of Ra for the 

oscillatory mode decreases. This indicates that the 

effect of increasing normalized porosity parameter is 

to destabilize the system.  

 

We also observe that the overstability curves 

have a very flat bottom, indicating instability can 

occur within a broad wave number band.  This 

behaviour was also observed by Khudeja et al. [21] 

for a chemically reactive Maxwell fluid having an 

isothermal lower boundary. Further we observe that 

all the neutral curves for overstability for different   

coalesce in the large wave number region. 

 

Furthermore, it is noted that the critical wave 

number, representing the size of cell pattern at the 

onset of stability, for the direct mode is smaller than 

that of oscillatory mode. The critical wave number 

decreases with increase in , andF    and increases 

with increase in PrD . The critical frequency 

increases with increase in andPr FD and it decreases 

with increase in and  . 

 

 

 

 



Syeda Khudeja Akbar et al. Int. Journal of Engineering Research and Applications      www.ijera.com 

ISSN: 2248-9622, Vol. 5, Issue 8, (Part - 5) August 2015, pp.168-177 

 www.ijera.com                                                                                                                              176 | P a g e  

VI.  Conclusions 

 
In this study, based on the modified-Darcy-

Maxwell model, linear convective instability of a 

Maxwell fluid layer undergoing a zero-order 

exothermic chemical reaction in a densely packed 

porous medium with constant heat flux lower 

boundary has been analysed. The effect of chemical 

reaction has been dealt with in great detail and the 

critical value of the parameter corresponding to 

chemical reaction has been determined. The critical 

media Darcy-Rayleigh number, wave number and 

frequency for overstability are determined.  

 

It is observed that there is competition amongst 

the processes of viscous relaxation, chemical reaction 

and thermal diffusion that causes the first convective 

instability to be oscillatory than stationary 

convection. The result of the study carried out can be 

summarized as follows: 

 

(i)  The Maxwell fluid behaves like an ordinary 

Newtonian fluid undergoing a chemical reaction 

for the case where exchange of stabilities is 

valid.  

(ii) The stationary mode is independent of the 

viscoelastic parameter. The viscoelastic 

properties of the fluid are observed only in the 

case of oscillatory convection.  

(iii)  The zero order chemical reaction taking place is 

seen to destabilize the system.    

(iv)  The effect of increasing stress relaxation time is   

to destabilise the system.  

(v) The Darcy-Prandtl number and normalized 

porosity hasten the onset of convection. 

(vi) The dimension of the convection cells is 

influenced by the presence of chemical reaction, 

stress relaxation time, porosity of the medium 

and the Darcy-Prandtl number. 
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